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Abstract: The problem is to calculate an approximate solution of an initial value
problem for an autonomous system of N ordinary differential equations. Using fast
power series techniques, we exhibit an algorithm for the p"‘-ordor Taylor series
method requiring only O(pN In p) arithmetic operations pekstep as p » +00, (Moreover,
we show that any such algorithm requires at least O(p'") operations per step.) We
compute the order which minimizes the complexity bounds for Taylor series and linear
Runge-Kutta methods, and show that in all cases, this optimal order increases as the
error criterion ¢« decreases, tending to infinity as ¢ tends to zero. Finally, we show
that if certain derivatives are easy to evaluate, then Taylor series methods are
asymptotically better than linear Runge-Kutta methods for problems of small

dimension N.
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1. Introduction

Let D be a set of points in the real N-dimensional linear space rN , and let O
be a set of operators on RN, such that the initial value problem of finding a function
x : [0, 1] + RN satisfying

x(t) = wx(t) if O<t<l
(1.1)
x(0) = xg
has a unique solution for every (xg , v) € Dx% ; we assume that x is analytic on fo, 11
The autonomous form of this system is no restriction, since any non-autonomous
system may be made autonomous by increasing the dimension of the system by one.

In Werschulz [76), we looked at the computational complexity of using one-step
methods to generate an approximate solution to (1.1) on an equidistant grid in the
sense of Stetter [73); that is, the methods considered computed approximations x; to
x(ih) by the recursion

(1.2) Xisp = X +helx;,h) (OsiSn-l,n-h'l),
where h = n~1 is the step-size of a grid with n points, and ¢ is the increment function
(Henrici [62]) for the method. (To be brief, we will refer to “"the method ¢.") In that
paper, we discussed the prt;blem of optimal order and minimal complexity for rather
general classes of one-step methods.

In this paper, we will use the techniques and results of Werschulz [76] to

analyze the complexity of using Taylor series methods and linear Runge-Kutta methods

to generate approximate solutions whose error does not exceed s. The model of .

computation, error measure, and complexity measure to be used are described in

Section 2, as well as the relevant results from Werschulz (76}
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We discuss the complexity of Taylor series methods in Section 3. Using the fast
power series techniques of Brent and Kung [76], we show that 0(::N In p) arithmetic
operations suffice to compute the p"‘-ordor Taylor series approximation; moreover, we
show that O(pN) operations are necessary. In Section 4, we discuss the complexity of
linear Runge-Kutta methods. In both Sections, we compute iower and upper bounds on
the complexity using a fixed method of given order; these results are then used to
compute optimal orders which minimize these complexity bounds. We show that in all
cases, the optimal order increases as ¢ decreases, tending to infinity as ¢ tends to
zero.

Finally, we compare these two classes of methods in Section 5, where we show
that if the partial derivatives of v are easy to evaluate, then Taylor series methods are

asymptotically better (as ¢ tends to zero) than linear Runge-Kutta methods for

problems of small dimension N.
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2. Preliminary Results

Before proceeding any further, we will establish some notational conventions.
Let I be an ordered ring; then X* and X** respectively denote the nonnegative and
positive elements of X. (This is used in the cases X = R, the real numbers, and
X = Z, the integers.) The symbol "=" means "is defined to be," while "s" means "is
identically equal to." We use "I" to denote the unit interval [0, 11 The symbol "¥V" is
used to denote the gradient of a mapping. The notations "x | a”" and "x T a" are used
to indicate one-sided limits, as in Buck [65] Finally, we write "(a.b)." to indicate the
cth part of equation (a.b), as in Gurtin [75]

We next describe the model of computation to be used. We assume only that all

arithmetic operations are performed exactly in R (i.e., infinite-precision arithmetic) and -

that for any algorithm to be considered for the solution of (1.1), a set of procedures is
given for the computation of any information about v required by that algorithm. (For
instance, with Runge-Kutta methods, we must be able to compute v at any point in its
domain.)

In addition, we must pick an error measure, so that we may measure the
discrepancy between the approximate solution produced by ¢ (via (1.2)) and the true
solution. For the sake of definiteness, we use the global error

(2.1) egimh) = max ggicn lIx(ih) - x| ,
where || * || is a norm on RN. Other error measures may be used, such as the jocal
error per step e and the local error per unit step ¢\ (see Henrici [62] and
Stetter (73] for definitions); this would involve only a slight modification of the results

contained in the sequel.
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We finally describe the complexity measure to be used. Let @ ={p, : p € z*%)
be a basic sequence in the sense of Werschulz [76}; that is, there exist functions
«:R*™1 3R and x , x;: R* + R* such that

(2.2) ogleph) = «(ph)hP  forh¢landp ¢ Gl
where

(2.3) 0 < x(p) s xlp)h) < aylp) < +0 forhel .

We say that ¥p has order p. This is a slight extension of the definition of order given
in Cooper and Verner [72]; the function «_introduced here is necessary and sufficient
for the “order” of a method to be unique. (For the sake of exposition, we assume that
x; and x| are analytic on R*, and that lim p-0 xL(p)I/ P and lim p-0 au(p)lh’. exist and
Qre positive real numbers; this will always be the case in the examples we consider.)
Then we will be interested in the total number of arithmetic operations C(p,a) required
to guarantee that

(2.8) v(;(wp.h) S ¢ =%,

for a given p and a given a. (Here e is the base of the natural logarithms.) We
suppose that O < ¢ < 1, so that a is positive. Clearly, a increases as s decreases, and «
tends to infinity as s tends to zero.

In the methods we consider, we may write

(25) ' Clpa) = nclp) ,
where n is the minimal number of steps required and the cost per step c(p) is the
number of arithmetic operations required for the method of order p. As in Traub and
Wo#niakowski [76], we shall express the cost per step associated with ®p in the form

(2.6) clp) := o(ﬁp(v)) + dip) .

Here np(v) is the information about v required to perform one step of vp and we
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write e(’!p(v)) for the informational cost of vp we call d(p) the combinatory cost
of ep

Note that we explicitly indicate the dependence of ﬂp on v, s0 that we may
compare the cost of (say) an evaluation of v with a scalar arithmetic operation.
Basically, e(ﬂp(v)) measures the cost of getting new data about v required by *pr
while d(p) measures the cost of combining this new data to get an approximate value
of the solution at a new point. For example, Euler’s method in RN

Xisl = X +hvix)
has informational ct;st 2:1! e(v;)) , where v; , .., vy are the components of y and for
any function w: RN, R. we define

2.7) e(w) = cost of evaluating w at one point .

The combinatory cost is 2! arithmetic operations, i.e., one scalar multiplication and one
scalar addition for each of the N components.

We must now face a problem that occurs in almost all areas of complexity
theory. The number of operations c(p) required for one step of a p"‘—order method is
usually unknown per se; we only have bounds of the form

(2.8) cL(p) s cp) < cfp)
That is, ¢ (p) is a lower bound on the number of operations required per step, usually
derived via theoretical considerations, and c|(p) is an upper bound on the number of
operations required per step, which is derived by exhibiting an algorithm ‘for
computing the p“‘-order method. (In what follows, we shall assume that the functions
Ly R* 5 R* are analytic, although this requirement may be grestly weakened.
However, this assumption holds for all examples that we consider.)

From the discussion in Section 3 of Werschulz [76], we find that the step-size h

must satisfy
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(2.9) hyfpa) s h s h (pa),
where

(2.10) hy(pa) = m (P }/P e /P and hyipe) = wyp)}/P o70/P
Using (2.5), (2.8), (2.9), and (2.10), we may find bounds on the complexity C(p,m).

Theorem 2.1: Define

CLpa) = f(P)e®/P, where f,(p) = (/P o (p),
and
Culp@) := ffp) e?/P | where fulp) = xU(p)I/ Peylp).

Then

(2.11) Cu(pa) s Clpa) s Cyfipe) .

Proof: See Theorem 3.1 of Werschulz [76] @

Thus we have bounds on the complexity of using ¥ to compute an approximate
solution satisfying (2.4). We now wish to consider the probiem of optimality. Define

(2.12) CYa) :=int {Clp,a): wp € &} .
We are interested in bounds for C*(a) under reasonable assumptions about f and fy,.
We first suppose that

(2.13) fi(p) >0 and fi(P)>0 if p>0
and

(2.14) lim pteo fL(P) = lim ppg = ¢ .
Assumption (2.13) is that there is no method whose cost per step is zero, while (2.14)
essentially means ".\at the "better" a method is (i.e., the higher its order is), the more
we should expact to pay for its use.

Using the techniques of elementary caiculus, we find that a necessary condition
for p to minimize Ci( * ,a) is that

(2.15) a = Gp) = P21 () / (P

B —
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similarly, C( * ,a) takes its minimum at p only if
(2.16) a = Gyp) = p2 fy(p) / fisp) .
Sufticient conditions for the existence and uniqueness of solutions to {2.15) and (2.16)
(i.e., for well~detined functional inverses of G| and Gyj) which actually minimize C ()
and C ( * ,a) are given in
Lemma 2.1: Let f| and f|) be as above, and suppose that
(2.17) G “(p)>0 if G(p)>0 and Gy“p)>0 if Gp)>0 .
Then 3 and Gy have respective functional inverses p *, py)* : R** + R** such that
for all p ¢ R** '
218 C @) = C(p *a)a) s Ci(p0)
and
(2.19) Cuf(@ = Cylpy*ale) < Cifpa)
with equality in (2.18) or (2.19) if and only if p = pL’(a) orps= pu'(a). respectively.
Proof: See Theorem 2.1 and Lemm; 3.1 of Werschulz [76] B
We call p *(a) (respectively, p;*(a)) the lower (upper) optimal order, C\ *(a)

(respectively, C\,*(a)) the lower (upper) optimal complexity, and

(2.20) hL’(c) - hL(pL*(a).a) (respectively, hu*(a) - hu(pu‘(a),c))
the lower (upper) optimal step-size. Combining (2.11), (2.12), and Lemma 2.1, we have

Theorem 2.2:

CL'(c) < CXa) s CU'(a). B

We next describe the behavior of these quantities as & increases and tends to
infinity.

Theorem 2.3: Let f, and fy be as in Lemma 2.1. Then p *(a), p;*(e), C *(a), and
CU‘(c) all increase monotonically and tend to infinity with a.

Proof: See Theorems 2.2 and 3.3 of Werschulz [76}.
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‘ Finally, we need a restriction of the problem class D% to “sufficiently difficult™
problems; this will allow us to determine x and thus establish lower bounds. We will
assume that

(2.29) ogleph) 2 (M hP if hel and peZ**
for some M, > O independent of h and p. In the methods we study, (2.23) holds

provided all sharp upper bounds are attained.
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3. Taylor Series Methods

The class 7 of Taylor series methods is defined by expanding x in & truncated

Taylor series. Thus the increment function ¥p is given by

@.1) pplh) = ZP20 V) nk 7 ke,
where
(3.2) v(k)(xi) = (d/dt® [vix(t)) x(t) = x;

The usual method of computing (3.2), as described in “classical' numerical analysis
texts such as Henrici [62], invokes the chain rule. This quickly leads to expressions of
horrifying complexity; for this reason, ;noot texts quickly abandon the discussion of
high-prder Taylor series methods.

We are interested in faster algorithms for computing ¥p First, we address the-
problem of a lower bound for the combinatory cost d{p).

Proposition 3.1: There exists a constant ag > O such that any sequence of
algorithms for computing &1 must satisfy

(3.3) dp) 2 a pN .

Proof: Any algorithm for computing ¥p requires the information

Npv) = {OPv: OsiBlsp-1} .

(We use the standard multi-index notation found in Friedman [69]) It is then easy to
see that the above set has O(pN) (as p T ) distinct elements, which are (generally)
independent; this is an immediate consequence of Problem 11 in Chapter 1 of Pblya and
Szegb [25]) Thus (3.3) gives a linear lower bound. §

Note that the constant a in (3.3) depends on N. Since we are treating the case
where N is fixed and p is allowed to vary, we will not indicate this doplndo;\co

explicitly. We now see how close we can get to an optimum value for d(p).
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Theorem 3.1: There exists a constant a; > 0 sqch that the combinatory cost
d(p) of computing vp € BT satisfies the bound

(3.4) : dip) < ay pN In (p+e) .

Proof: We first consider the case N = 1. Note that x(h) is the zero of

(35) F(z) o= j:o dE/vi® - h.
As in Brent and Kung [76], we consider the formal power series

P(s) := F(xg+s) - F(xq),
where s is an indeterminate. Let V be the power series reversion of P. Adopting the
notation of Brent and Kung [76], we see that
x(s) = xg + V(s) = xg + V() + osP*) .
By the uniqueness of the Taylor coefficients of an analytic function, we see that
eplxoh) = hlv ).

Since the number Vp(h) can be computed in O(p In p) operations from the Taylor
coefficients of v (by Theorem 6.2 of Brent and Kung [76]), the result for N = 1 follows.

For N 2 2, we use Newton’s method (Rall [69]) applied to the formal power
series operator P given by

(PyXs) := y(s) - xg - 5; viy(r)) dr ;
clearly, the formal power series x(s) is the zero of P. The algorithm itself is defined
recursively. Let a formal power series x(p)(s) satisfying
X(p)) = x(s) + O(sP*])

be given. Precompute

3.6) wis) = {5 vix(p)(r)) dr - xg - x(pys) + O(s2P*2)

@.7) Qs) = Dvlx(py(s)) + 0(s2P*2)

and let u(o)(s) = 0, Then set

X(2p+1)(8) = X(p)s) + U q)s),
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where

(3.8) Uggap)(s) = 5 QUe) uylr) dr + wis) + O(s2P*2), O s ks p .

Following the proof given in Rall [69), we find that
X(2p+1)(8) = ¥(s) + 0(62P*2)

We need only consider the cost T(pN) of computing the series x(p)(s) in
determining d(p), since x(h) may be recovered from the formal power series in O(p)
operations. Clearly, we have the recursion

(3.9) T(2p+1,N) s T(pN) + Tg + Ty + Tg,
where T, is the co;t of step (3.m) for m = 6, 7, 8. Let COMP(p,N) be the time required
to find the first p terms of the formal power series f(y;(s), ... , yp(s)), where f, yy, ...,
yn are formal power series, and yis -1 YN have zero constant term. Theorem 7.1 of
Brent and Kung [76] states that

COMP(p,2) = Ofp2 In p),
and it is easy to show that for any N¢ Z **,
COMP(p,N+1) = O(p COMP(p,N)) .
Thus for N 2 2, we have
(3.10) comPipN) = 0(pN In p)
and so we see that
Tg+T7 = 0(2p+1)NInp).
Finally, let MULT(p) be as in Brent and Kung (76} we see that
Tg = (p+1) [N2 MULT(2p+1) + O(p)] = O((2p+1)2 In p)
if Fast Fourier Transform multiplication (Borodin and Munro [75]) is used. Since N 2 2,
we have

3.11) Te+ Ty +Tg = 02p+1)N in p),

and s0 (3.9) and (3.11) imply that
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TeMN = opNinp),

which completes the proof. J§

(Note that the second algorithm is inferior to the first algorithm when applied to
the scalar case N = 1, where we find that the second algorithm requires O(pz In p)
arithmetic operations.)

"We now determine bounds on C(p,a). First, consider lower bounds. Clearly,
there exists e (v) 2 O such that

(3.12) ebv)) 2 e (v) (1sisniBleZ) .
Since mp(v) has O(pN) elements, there exists a constant by > 0 such that

(3.13) emp(v)) 2 b e (v) pN .
From (3.3) and (3.13), we have a lower-bound cost per step of

3.14) c(p) = [a, + by e pN .
This leads to

Theorem 3.2: C(pa) = M [a + by e ()] pNe?/P .

Proof: This is an immediate consequence of (2.23) and (3.14). |

Note that f|(p) := M c (p) satisfies the conditions of Lemma 2.1. Thus, the
optimality theory of Section 2 holds. In particular, we have

Theorem 3.3: C *a) = My [a + b, e ()] (e/NIN N

Proof: From (2.18) and (3.14), we find that G| (p) = Np, so that

pL@ = a/N and h¥a) = (MMl

The result follows by letting p = p(_‘(a) in the definition of C(p,a). I}

However, recall that we assumed that the non-identical mixed partial derivatives
of v are independent. There are a number of systems for which this is not true (for

instance, constant coetticient linear systems); for such systems, it is clear that we may

il it
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be able to use the extra information of non-independence to find algorithms that are
taster than the lower bounds given above. However, we will ignore this case and only

consider the problem for a "general" function v.

St sdbah

Next, we turn to upper bounds on the complexity. Theorem 3.1 tells us how to
combine the necessary information to get the solution at a new grid-point; we need
only measure the cost of getting the information. So, let

e(“)(v) = max {e(D’vi): 1SisN, | =k} .

Using the result in Pblya and Szegh [25], we see that 4

@15  e@yw s NIPIE oK) okt / [KON-1)Y] .
Unfortunately, the right-hand side of (3.15) does not fit our general model, s0 we must
assume that we know how e{*)v) changes as k increases. We will consider the case
where the cost of derivative evaluation is bounded; that s, we will assume that

(3.16) o) < eyv)
for some e (v) independent of k. Other cases (e.g, eX(v) = OK™) for some m > 0)
may be analyzed in a similar manner; of course, they will give different results. By
(3.15) and (3.16), there is a by; > O such that

(3.17) eMpv) < byeyvipN.
From (3.4) and (3.17), we have an upper-bound cost per step of

(3.18) Cue) = ay e In (pee) + by eytvipN .
This leads to

Theorem 3.4: There exists an M, > O such that

Culp) = My [ay pN In (pee) + by eU(v)pN] eo/p

Proof: By Cauchy’s Integral Theorem (Ahifors [66], pg. 122), there exists a

B > 0 such that

IR+ 7 et < B*
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. where we define

(3.19) Myl = rmox 4 ¢ 1 lly (Il
for any y: 1 = RN, Thus by Section 3.3-3 of Henrici [62], we see that a Lipschitz
constant for o in @1 is given by
ZP IRl ok f et s P @K s Lam 1 -BRGYY,
provided that h < hg < g1, By Section 3.3-2 and 3.3-4 of Henrici [62), there exists an
My > O such that
'G"p.h) s My hP. -
The result now follows from Theorem 4.1 and (3.18). §§
We are now ready to consider the optimal p for C fp,a).
Theorem 3.5:
(1) For all @ > 0, there exists pu‘(c) such that (2.19) holds.
(2) py*e) increases monotonically with a, and
pu*(a) ~a/N asat .
(3) Cy*(a) increases monotonically with &, and
Cy*(@) ~ My ay e/NNaVina asatow.
@) hy*e@~MyeMr! ssato.
Proof: Clearly ¢ satisfies (2.13) and (2.14). Now write
GyP) = Gylp) + Gx(p),
where
Gy(p) = Np and Gylp) = »p?/Dnp) s
here we set
Da(p) := (p+e) [(p+e) In(pse) + 1] end » = ay, / by eyv)] .
We see immediately that G; satisfies (2.17); a straightforward calculation shows that

Go'(p) = » [D(P)]2 (vp [In (pse)] - 1]+ 26[v In (pee) + 1]},

o et bbb o e <UD S o Rt 1.
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so that Go’(p) > O for p > 0. Thus Gy satisfies (2.17), which shows that Gy satisties
(2.17). Hence p|;* and C|)* behave as described in Theorem 2.2.
Since pu‘(a) goes to infinity with a, we see that
« = Gyfpy*@) ~ Np,*a) +py*a /Inpy %@ ~ Npy¥a),
which gives the asymptotic estimate in (2.). The rest of the The rem follows from thh
estimate. [

Unfortunately, the estimates given above are only asymptotic as & T co; this will
be typical, since many of the equations to be solved involve products of logarithmic
and polynomial terms, and thus cannot be solved exactly. On the other hand, these
asymptotic expressions are sufficient for our purposes, since they describe how
quickly p*(a) and C|;*(a) increase with a. |

Note that as a tends to infinity, C;;"(a) becomes independent of e fv), which
measures how hard it is to evaluate the derivatives of v; this is because the
combinatory cost eventually overwheims the informational cost. This kind of behavior
will be typical of the complexity analyses in this paper. Finally, note that the bound

(3.20) C *a) = O(aM) < C¥%a) < OlaNina) = Cy%e) asat
implies that

Cy*@ /C %a) = Olina)as at o
this indicates the gap in our knowledge of the complexity of solving (1.1) vie Taylor

series methods.
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4. Linear Runge-Kutta Methods

For many functions v, caculation of the derivatives required by Taylor series
methods is prohibitively expensive. For this reason, we are interested in methods
which use information that is somewhat more readily available. In particular, we will
consider methods that use only evaluations of v, combined in a highly structured
manner. We say that ® p is a class of linear Runge-Kutta methods (abbreviated, "LRK
methods”) if each increment function vp May be written in the form

(4.1) plh) = T Ay
where

4.2) ko= VG +hZoN k) forOsiss-1,
the ihteger s = s(p) is said to be the number of stages of epi the number of steges is
equal to the number of times the vector function v must be evaluated. (In order to
simplify notation, we will not explicitly indicate the dependence of hﬁ and k,- on p.) The
method ¢, defined by (4.1) and (4.2) is explicit in that k; depends only on kg , .. , ki3
see Butcher [64] for a discussion of semi-explicit and implicit methods. (We. use the
adjective "linear” to distinguish these methods from "nonlinear Runge-Kutta methods,”
which were first proposed in Brent [74])

Since the function ¥p is (in practice) always evaluated by using the obvious
algorithm shuostod by its definition, we shall identify an algorithm for evaluating L0
with *p itself. Thus the problem of finding the best algorithm for evaluating % in
@ ri is equivalent to the problem of finding the best basic sequence of LRK methods

possible. This is related to the problem of finding the smallest value of s(p) such that

5 has order p. This minimal value is given by

R i et
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P p=1,2234

pel p=5,6
(4.3) s(p) =

p+2 p=7

unknown p28

For methods of order greater than seven, a gap develops. For instance, eighth-order
methods with eleven stages exist, and it is known that any eighth-order method
requires at least ten stages. For arbitrary p 2 8, the best bounds known for the
optimum value of s(p) are

(4.9) . p+¥®p) s s(p) < (p2 -7p+lQ)/2 ,
where #(p) 2 ¢ In p for all sufficiently large p (for some ¢ > 0). The lower bound is
given in Butcher (75} the proof is quite involved, and the result is not much better
than the “trivial” lower bound s(p) 2 p (Hindmarsh [74], page 84). A class ®cypy Of
methods such thet ¢, requires only (p2 - 7p + 14) / 2 stages is given in Cooper and
Verner [72)

We first consider lower bounds on the complexity C(p,e) using LRK methods.
The “trivial” lower bound s(p) * ,» will be used, since the term @(p) will be small when
P is small and will not affect the asymptotic behavior of optimal order and complexity
for p large. It is known (Butcher [64)) that at least Op2) of the subdiagonal elements
of the matrix A (whose slements are the A, in (4.2)) must be non-zero in order for A
to define a p'M-order method. Thus there exists 8, > O such that

(45) dp) 2 a p?
since s(p) 2 p, we see thet

(4.6) oRp(v) 2 Ney(vip,
where we now write

o (v) = min oy elv) .

b adiiion, . ibinbaloat bt
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lThun (4.5) and (4.6) show that a lower bound on the cost per step for *p is given by

@7 o) = a P2 +Ne(v)p .

Iheorem 4.1:

Ci(p) = My [a p2 +Nej(v)p)e®/P .

Proof: This follows immediately from (2.23) and (4.7). [

It is clear that f (p) := M [a pz + Ne((v) p] 0®/P satisties (2.13) and (2.18).
We claim ﬂm f vields a G satisfying (2.17). Indeed, write

f(p) = f1(p) f2(p),
where
fip) = M a p
and
fo(p) = p+», where » := Ney(v) la .

Clearly f; yields a G| satistying (2.17). Since f; is a linear polynomial with a negative
zero, it may be shown that f, yields a Gy satisfying (2.17). Thus f| yields a G
satisfying (2.17); in fact, we have

48)  GUP) = Gy(p) + Golp) = p 1+ (1 +wp V1]
This leads us to

Theorem 4.2:

ClMa) ~ (M s 02 /8]a? s et .

Proof: From (4.8), we see that Gi(p) ~ 2 p as p T . Since (2.13), (2.14), and

(2.17) hold, p| *(a) tends to infinity with . Thus
a = Gp*a) ~ 2p %) satw,

i.e., p @) ~ a/2 as & T ®. The result now follows trom Theorem 4.1. I}

We now turn to upper bounds on complexity. The class ®cypy derived in

st i ki i
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Cooper and Verner [72] has two deficiencies, the first of which is that no uniform
upper bound on 'LU(’p'h) is known for ®cypy; in eddition, the combinatory cost for
fhis class of methods is O(pa) as p T ®. Instead, we turn to the basic sequence ®cpk
discussed in the Appendix. There, we prove that there is an My, > 0 such that

(4.9) cc(pp.h) S (Myin(p +e)h)P,
provided h < hp, where hp = O((in p)"l) as p T . Furthermore, there are a large
number of extra zeros in the matrix A for vp € ¥cri: Using the notaetion of the
Appendix, we see that the number of non-zero entries in A is

Dok - 2
= p3/3-p%24+7p/6
’ s p3/3+2p2/3

for p € Z**. Finally, note that the number of stages s(p) required for ?p € ¥CRK is

(4.10) s(p) = Wp2-2p + 2)/2] < p2f2 +p
for p € Z**, which shows that the number of stages required for a pth—ordor method
in $cpi asymptotically equals the number requires for a p"‘-order method in ®cyRK:
Thus (considering the combinatory costs), the class ®pypi actually costs more per
step than does ®cpy; ignoring the combinatory costs would have caused us to reach
the opposite conclusion.

First, we look at the cost per step. By (4.10),we see that

(4.11) e(’!p(v)) s é ®2+p)N eylv),
where

ey(v) = max j o evy) .

Since we are using ®cRy, it is easy to see that there is a by 2 2/3 such that

(4.12) dip) < (p3/3 + by p2) - 2N .

TP ol TR T o S W T RS PROEE LAY wee TR PN e
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Combining (4.11) and (4.12), we see that the total combinatory cost per step is

bounded by
(4.13) cyip) = N[203/3+8, P2+ 8201,

where
By = eyv)/2+2by and @; := eyv) /2.
Using (4.9) and (4.13) gives
Theorem 4.3:
Culp) = MyN[2p3/3 +8;p2 +8p]In(p+e)e®P . B
Now we look at the optimality theory for the upper bound.
Theorem 4.4.:
(1.) For all @ > 0, there exists pu'(c) such that (2.19) holds.
(2) py*(a) increases monotonically with a, and
pytia) ~ a/3 asato .
(3) Cy*(a) increases monotonically with e, and
C @) ~» [2MyNe® /81 ]alina ssat
4) hy¥e) ~ ( Muea na)! ssat .
Proof: We write
ffp) = Myin(p +e) )
in the form
fulp) = f1(p) fo(p),
where
t1(p) = MyNpin(p+e) and fo(p) = 2p2/3+ 8y p+By .
It is clear that f; satisfies the hypotheses of Lemma 2.1. Now we consider fo. Clearly

f2 has no positive zeros; it may be seen that the condition by; 2 2/3 implies that {5 has
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a positive discriminant and hence has no complex 1oots. Thus f, has only negative
roots; one may then show that this guarantees that f, satisfies the hypotheses of
Lemma 2.1. Thus, the same may be said for f = f; f5.

Thus p* and C;* behave as described in (1.) of Theorem 2.3. We also see thet
Gyfp) ~3 p as p T . Thus the estimate in (2.) holds, from which we get the estimates

in(3)end (4). B
So in the class of linear Runge-Kutta methods, we find that
(a.19) C ™a) = Ole?) s CYa) s C*(a) = Ole’ Ina)
as « tends to infinity; hence, the ratio
' Cy*@ /C %a) = Olaine)
indicates the gap in our knowledge of the complexity of linear Runge-Kutta methods.
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5. Comparison of the Methods

We now wish to compare the classes of Taylor series methods and LRK methods.
Write CU.T‘ : CL.T' , and C1* (respectively, CU,LRK‘ : CL,LRK‘ , and Cpi® for Cy*,
C_* and C* in the class &y (respectively, the class & gy). Since we have only
asymptotic expressions for these quantities, we are forced to use an asymptotic
comparison. If f, g : R** o R** satisty lim _q0, f@) = lim 4o gla) = +00, we will
write
(5.1) t<g iff Ha)=olgla))asat o;
we say that f is asymptotically less than g. If f < g, there is an ag > O such that
f(a) < g(a) for a > ag, so there is a non-asymptotic interpretation of the order
relation <. Thus if f and g are cost functions, the statement “f < g" implies that the
method whose cost is given by f is "better” (i.e., cheaper) than the method whose cost
is given by g, for s sufficiently small. Using the results of (3.20) and (4.14), we then
have the following
Theorem 5.1: Suppose that (3.16) holds.
(1) JN=1then Cyy*<Cipc* -
(2) I¢N=2then Cyt*<Cypc® -
(3) If N =3, then
Cyr'@ = OCy py*(e)
and

Cum‘(l) - (XCUJ‘(C))

asa T o

(4) 1N248,then Cyp®*<C t*. B

e B, Sl s St




If (3.16) does not hold, then (1.), (2.), and (3.) may be false, but (4.) will certainly
be true. As an immediate corollary to the Mvo theorem, we have
Theorem 5.2:
(1) If N =1 and (3.16) holds, then Cy* < C py* .
(2) IfN24,then Clpe*<Cy* . B
So if the derivatives of v are cheap to evaluate, we see that the best Taylor
series method known is better than the best linear Runge-Kutta method possible for

the scalar case N = 1; but if N 2 4, the best linear Runge-Kutta method known is better

than the best Taylor series method possible.

l
i
i
;;
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Appendix: Error Bounds for a Sequence of LRK Methods

In this Appendix, we describe a subclass of a class of linear Runge-Kutta ("LRK")
methods due to Cooper [69] We shall first prove the following
Theorem A.1: There is a basic sequence ®cgpi~ of LRK methods such that
(1.) Each ¥p ¢ ® Rk’ requires
s(p) = (pP2-p+2)/2
evaluations of v per step.
(2) There exists an My > O such that
(A1) vG(wp.h) < (My In (p+e) h)P
for h < hp = O((In p)'l).
We use the notation of Cooper and Verner [72] Let p € Z** be given; define
p:Z*n[0,p)]» Z*by :
' Dl okeis) /2 itjAp
(A2) p(j) =
s ifj=p ,
where we write "s" for "s(p)" as defined above. Next, a set {§g , .., &} of integers is
defined by picking £y := p, and setting §; (i # 0) to be the unique integer in [1, p]
satisfying
(A.3) ol - 1) < i s plf) .
We now pick ug , ... , Ug € I satisfying
(A.4) up=0, ug=1, y#0ifik0
and
(A5) & = Ej and i # j) implies u; ¢ uj .
- Finally, we pick a matrix of coefficients A := (l,i: 0sjsi-l, 1 siss)such that

(A.6) Nj=O0 it k-1 (Ushise

¥ : TR TS i el e o b e s e e s Sl s e e



A7) BNyt = ety @sesk-11sise .

Cooper and Verner [72] point out that these conditions may always be fulfilled; the
resulting A defines a p"‘-ordor LRK method with s stages.
“We are interested in a choice of ug , .. , ug which will give a small error

coefficient. To this end, we will choose

(A.8) {uj: fj =n} = {(1+x,)/2: 1sksn} (lsnsp-1),
where Xy, , - , X are the zeros of the Jacobi polynomial P, := Pn“'” (see
SzegB [59)). Since (hese zeros are distinct and lie in [-1, 1], conditions (A.4) and (A.5)
may be satisfied.

Now we are able to exhibit a solution to the ith system in (A.7). First, note that
the equation for £ = O may be separated from the others, since up = 0. Setting

nw=§k-1,

we see that

(A9)  No = u-Z\Nj = u-Z (N <iand fzn},
the last by (A.6). We wish to determine the nonzero "ij' i.e., those "ij for which 5] 2n
and j <i. So setting

*ij =0 wunless j€{jj,.,in);

we see that the remaining xij are the solution of the system

22.1 “jk' ik = (e} Lyl sesn) .
Thus the X are the weights for an interpolatory guadrature formula on [0, u;] with

abscissae uj Ry ujn . From the usual expression for such weights and (A.6), we see
that

-1 (*
N B = Mikn = [(2P,’(cos ¥;,)) 1 I Bine1 [Pp(cos 8) / (cos & - cos 9)p)] sin @ dO

where x,, = cos &y, (1 sk sn)

o & i o 3 S i s bt 0% s
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Lemma A.l: My, = oinlinnasnt o,

Proof: Since the zeros of P, are symmetric about the origin, we may sssume
thet O < &, < ¥/2. Using (8.9.2) of Szegh [59], we then find

Bikn = OK3/2n3) j’;i'm | [Prfcos 8) / (cos @ - cos yp)] sin ddd .

Case L1 O34 S %nap S e/ "We consider the integral over

(®1n/2 "i,ml] , since Theorem 15.4 of Szegd [59] proves that
ouS/2n 3 (1 §7 1+ ’-01,,/2 - o)) .

(Here the integrand is the same as in the preceding integral.) But the proof of (15.4.12)
in Szegd [59] extends almost immediately to a proof that the remaining integral is
O(k~2n), since (15.4.12) is proved by order-of-magnitude estimates. Thus sy, =
0tn~}) = 0(nL In n) for Case 1.

Case 2: ok’,,,,llz < "i.ml s 30”,,1/2. We consider the integral over
(Pkn/2 oi,n+1] , since Szegh [59] shows that

oS3y o o1 = o
As in (15.4.13) of Szegh [59), we have
Syimd = oD+ 1p
Here
I = j':::;é D(6) sin @ d¢ ,
with
D(0) := [cos (N® + «) - cos (N®,,, + 4)] / [cos @ - cos ®xnl»
where N :=n + 3/2 and 4 := -3%/4, and
Ip = j Wl R,(0,0y,) sin & do = Olnk~3/2) ,

w.th R, the remainder term in (8.8.2) of Szegd [59) Unfortunately, the proot that

(15.4.14) of SzegB (59] is bounded does not extend to a proot that 1; is bounded,

LAk a ) e SO et mu..r....';_....-a.‘»;m..;..aj
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since the proof of the former requires that the interval of integration be symmetric

about ¢, ,,. However, it is straightforward to verify that
Iy = o) S/ sinne /0100 = Onm) .

Thus mjyp = 012K In n) = O(n™2 In n) for Case 2.

Case 3: 3’k.n+l s ‘i,m»l S 3¢/4. We consider the integral over
(3%kn/2: 9 napl s since Szegd [59] proves that

owS/2n3) | [Ty, a1 = O07h) .

But the proof of (15.4.19) in Szegd [59] extends to prove that the remaining integral is
Ok"5/2n) (as in Case 1). Thus Mikn = 0(n~1) = 0(n™! In n) for Case 3.

Case 4: 3w/4 s &, S O,,1n0, We consider the integral over
(3%/4, ‘i.m 1], since Szegd [59] shows that

owS/2n=3y ) (3 a1 = 007Dy

As in Cases 1 and 3, the proof of the above may be extended to prove a similar bound
on the integral of interest. Thus w,, = o)) = 0(n~! In n) in Case 4, completing the
proof of the Lemma.

Thus (A.9) and Lemma A.1 show the existence of a A > 0 such that

(A.10) Zih Bl s An v o
here A\ is independent of p. Moreover, the result for the case i = s may be sharpened.
We see that "si 2 0, since the 0 for the sth system in (A.7) are the abscissae for
Lobatto quadrature. Thus

(A11) 250 M) = Tigh = L,
the consistency condition in the last equality being a consequence of (A.7) with ¢ = 0.
Proot of Theorem A.l: As in Cooper and Verner [72), we define
s = xuh) = k;

v LG~ SOV R b i s S S N R 1 R Y oS el e e o it i
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b = fo) s du - 270 N Ko

for 0 s i S s; note that 8y = sg = 0. Let 2(h) be the computed approximation to x(h)
then .
Wl - 2l = 0™ [t - x(0)] = Z573 Ay by I
(A12) S I0gl1+ 12 Asi sl
S liBgll ¢ max ¢ o 5y lisill

the last by (A.6) and (A.11). By the analyticity of x, there is an A} > O such that

8 = b1 I xu) - 2oy WmDN0) /ot Il < (A wh
and

vij = Il %ujh) - !,ei.'ol (y;m)* #70) /o1l s (A h)‘i ’
so that the definition of §, gives

Wl s 8+ Zig Wyl v

€, gi-l
(A.13) s (g e 2h ngrea wl
s (Ap W

for a suitable Ap > 0. Thus (A.12) becomes
A18)  h7L ) - 20 < (A hP + max g o gy el -
We now use Lemma 1.1 of Cooper and Verner [72] and (A.6) to find that if L is &
Lipschitz constant for v, then there exists Ag > 0 such that
ol 5 B IR+ BL 2170 gl ma; ll
s (Ag h)‘i*l +(Ag h) In (§; + @) max ; lly;ll ,
the last by (A.10) and (A.13); here, the maximum is taken over all j < | such that
t,- 2 § - 1. A straightforward induction shows that if (1 + in 2) Az h < 1, then
il s (Agtn G + o) Wi
for a suitable Ag > 0. Combining this with (A.14), we find
(A.15) h=d Jix(h) - zhl S (Ag In (p+e) WP,



the desired bound for the local error for a single unit step.

To extend (A.15) to a global error result, we must look at the Lipschitz constants

for the increment functions. Let L be a bound on ||Tv]l, and write "Vrp(y.h)" to

indicate gradient with respect to the vector variable y. Now

I A IR

IVpplyll s 2570 Wil mex ggice-y WKy,

Iy

i: = max ggics-1 IVR(y,DII,

§ where we write "k,(y,h)" to indicate the dependence of k; upon y and h. By the

: definition of k,(y,h), we find

* Vi) = ) [y + b Zjg N T, ;
, where u ;= y + h 8;'_:) Nj ki(y,h) and 1, is an NxN identity matrix. Taking norms in ]
‘ é the above gives the result

b s Lx+hu[ln(ii+e)mx{ri: j<i and 5,-2&-1}],

where {; := [|Dki(y,h)ll. Writing A, for the Lipschitz constant for pp, it is essy to see
that (A.16) and the above inequality imply
-1 g1 aif )2 .
Ao S Ej o (WAL, In (pre-k),
which is bounded for all p, provided that h s hy, < (LA In (p+e))'l. Thus (A.1) follows >
from this result, (A.15), and Theorem 3.3 of Henrici (62] W

The value for s(p) indicated in Theorem A.l may be improved somewhat by

noting that since we are using a Lobatto quadrature, higher order may be expected

with fewer steps. Indeed, if we use the strategy outlined in the comments following

Theorem 4 of Cooper and Verner [72), we have

‘ Theorem A.2: There exists a basic sequence ®cpy of LRK methods such that

(A.1) holds and vp requires
s(p) = ((p2-2p+4)/2)
evaluations of v per step. [
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